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Time-dependent gap Hele-Shaw cell with a ferrofluid: Evidence for an interfacial singularity
inhibition by a magnetic field
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We consider the flow of a ferrofluid droplet in a Hele-Shaw cell with a time-dependent gap width. When the
surface tension and applied magnetic field are zero, interfacial instabilities develop and the droplet breaks. We
execute a mode-coupling approach to the problem and focus on understanding how the development of
singularities is affected by the action of an external field. Our analytical results indicate that the introduction of
an azimuthal magnetic field profoundly modifies pattern formation, allowing the inhibition of interfacial
singularities. We suggest the magnetic field can be used as a controllable parameter to discipline singular
behavior.
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[. INTRODUCTION ways of controlling emerging interfacial singularies.
In this work we study the evolution of a fluid droplet in a

The development of finite-time singularities is of funda- time-dependent gap Hele-Shaw cell, and consider the case in
mental importance to a broad class of hydrodynamic prOb\'/vhich the fluid used is derrofluid [12,13. Ferrofluids are

Iems,. such as the 0r3es relatgd to _dIStrlbutlons of Vorticity, y 1pidal suspensions of nanometer-sized magnetic particles
evolving under Euler’'s equatiofil], jet breakup[2], and

droolet fission/ 31 Within thi ¢ b suspended in a nonmagnetic carrier fluid. These fluids are
roplet fission/snap-off3]. Within this group of problems, a1y Newtonian and behave superparamagnetically. We
the dynamics of the interface between viscous fluids con

' ) investigate the situation in which the ferrofluid droplet
fined cljn a Hﬁle—Shqw ce(lSa;‘fmzn-T%ylor prot;lem?as € evolves under the influence of a simple magnetic field con-
celve r:nuc attenthmaﬂ.ﬂ n the a sI((ance 0 surface ten- figuration exhibiting azimuthal symmetry, produced by a
sion, these constrained flows are known to form CUSQy,rent.carrying wire perpendicular to the cell plates. We

singularities and droplet fission at the fluid-fluid interface'perform a weakly nonlinear analysis of the problem, and find
Recently, an interesting work by Magdaleewal. [6] studied o qretical evidence indicating that the azimuthal magnetic

the possibility of preventing cusp singularies for zero surfacge|y cqyid be used to inhibit the emergence of interfacial

tension flows in a rotating HeIe-Shaw cell. They hayg ShOWrkingularities, even when surface tension is zero. One must
that for a subclass of exact solutions there is a critical rota:

. b hich f o d.1 exercise caution in using a weakly nonlinear approach to
tion rate above which cusp formation is suppressed. Interesy 5| it the zero surface tension case, which presents subtle
ingly, it has been found in Ref6] that such a critical value

for th . b dicted by i bil | singular effectd14]. On the other hand, the present weakly
or the rotation rate can be predicted by linear stability cal-,qjineay analysis serves as an alternative analytical tool to
culations. These results open up the possibility of the exis

. 4 ~>fackle the problem, being nonperturbative in surface tension.
tence of similar types of control parameters which could IN-Remarkably, it has been shown recently that weakly nonlin-
hibit the formation of finite-time singularies in other

. : ear predictions of the Saffman-Taylor problem at low orders
important confined flow systems.

are compared satisfactorily to exact solutions for zero and
A couple of years ago, Shelley and collaboratafisstud- P y

. ) -2 nonzero surface tension cagds|. The magnetically moni-
ied another variant of the traditional Saffman-Taylor prob'tored process we present here certainly add a welcome ver-

lem, and examined the dynamical evolution of a fluid drop 'nsatility to usual singularity formation problems in nonmag-

a Hele-Shaw cell with a time-dependent gap width. In such g o fijigs, allowing the emergence of a systematic way of

cell the pressure gradient within the fluid is due to the lifting o y41ing singular behavior using ferrofiuids and appropri-
of the upper plate, leading to the formation of visually strik- ate magnetic fields

ing fingering patterns. The sophisticated numerical simula- The layout of the rest of the paper is as follows: Section II

tionfs performed in Rdef[Y]btr)e\IlleakI}ed tga:j, in Ithe abslzn(;_e 9f formulates our theoretical approach. We perform a Fourier
surface tension, a dumbbell-shaped droplet wou 'SS_'O'aecomposition of the interface shape, and from a modified
into two, characterizing a fissioning instability. The fluid form of Darcy's law study the influence of an azimuthal

flow in lifting Hele-Shaw cells is not only intrinsically inter- 5 hetic field on the development of interfacial patterns in a

esting, but also of considerable importgnce to adhesion. '%ime-dependent gap Hele-Shaw cell. Coupled, nonlinear, or-
lated problemg8-11). Due to the practical and academic dinary differential equations governing the time evolution of

relevance of the lifting cell problem it is of interest to study Fourier amplitudes are derived in both nonzero and zero sur-
face tension cases. Section Il discusses linear and weakly
nonlinear dynamics, focusing on the zero surface tension

*Email address: jme@df.ufpe.br limit. Section Il A briefly discusses our linear stability re-
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Side view Upper view

FIG. 1. Schematic representa-
tion of a time-dependent gap
Hele-Shaw cell with a ferrofluid.
The azimuthal magnetic field is
produced by a long, straight wire
carrying an electric currerit

sults, which suggest control of interfacial singularities bydemagnetizing field relative to the applied field and can be
magnetic means. In Sec. Ill B we show that some importanjustified for low magnetic susceptibility of the ferrofluid, or
interfacial features can indeed be predicted and more quaffier large applied fields that saturate the ferrofluid magnetiza-
titatively explained by our analytical mode-coupling ap-tion. It can also be justified for very thin ferrofluid films
proach. At second order we describe a finger competitionvhen the field is parallel to the plane of the cell.
phenomenon, and use it to propose a mechanism responsible As in the traditional Hele-Shaw problem, the flow in the
for the inhibition of interfacial singularities by an azimuthal ferrofluid is potentialy=-V ¢, but now with a velocity po-
magnetic field. Our conclusions are summarized in Sec. [Vtential given by a modified Darcy’s lajd 8]

b2
Il. THE MODE-COUPLING EQUATION b= Ey[p -], (1

Figure 1 sketches the geometry of the lifting cell problem.
Consider an incompressible ferrofluid of viscositocated
between two narrowly spaced flat plates. The outer fluid i
nonmagnetic, and of negligible viscosity. The initial plate
spacing is represented Iny, and at a given time the plate-
plate distance is denoted layb(t). A long, straight current-
carrying wire is directed along the axis perpendicular to th

where p is the hydrodynamic pressure in the ferrofluif,
S:,uoxHZ/Z is a scalar potential containing the magnetic con-
tribution, andu is the free-space permeability. In addition to
the inclusion of the magnetic term in Ed.), we still have to
consider a modified incompressibility condition of the ferrof-
eluid, to account for the lifting of the upper plaig] V-v=

p|ates_ The magnetic field produced—'s:| /(ZWr)ég, wherer _b(t)/b(t), where the overdot denotes total time del’ivativ.e.
is the distance from the wiré represents the electric current, SO, in contrast to the usual Darcy’s law case, the velocity
and@, is a unit vector in the azimuthal direction. potential(1) is no longer Laplacianand satisfies a Poisson

To investigate the dynamical evolution of the interface inequation
a time-dependent gap Hele-Shaw cell, we describe its per- .
turbed shape asR(6,t)=R(t)+{(0,t), where (6,t) V2= @ ()

=317 {,(hexp(ing), represents the net interface perturba- b(t)’

tion with Fourier amplitudes;,(t), and discrete azimuthal where its right-hand side depends only on time. As a conse-
wave numberi=0,+1,+2,.... Theunperturbed ferrofluid ¢ ,ence of the latter, the solution of B@) differs from being
interface has initial and final radii defined & and R harmonic by only the simple particular solutiorg
=R(t), respectively. We consider a current-carrying wire of . . -
negligible radius, so that the conservation of ferrofluid vol-=Pr/(4b). The problem is then specified by two boundary

ume leads to the useful relati®fb=Reb,, where bottRand ~ conditions:(i) pl=y «, which expresses the pressure jump
b are time dependentNotice that the Fourier expansigh at the interface, where denotes the interface curvature, and

includes then=0 mode, withy=—(1/2R)= 0|V v is the surface tension; an@i) the kinematic boundary
For the quasi-two-dimensional geometry of the He|e_condition, which states that the normal components of each

Shaw cell, we employ the lubrication approximation and re-1uid’s velocity v,=-n-V ¢ are continuous at the interface,
wheren is the unit normal pointing outward.

duce the three-dimensional flow to an equivalent two- ! o
dimensional one by averaging over the direction We adapt a weakly nonlinear approach originally devel-

perpendicular to the plates. We assume that the ferrofluid igPed to study the traditional fixed-gap Hele-Shaw problem
uniformly magnetized and that its magnetization is collinearlb=0) with nonmagnetic fluid¢M=0) [19], to the current

with the external fieldVl = yH [16,17, wherey is the con- time-dependent gap situation with ferrofluids. We define
stant magnetic susceptibility. This amounts to neglecting théourier expansions for the velocity potentials obeying Eq.
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(2), and use the boundary conditions to exprése terms of
. After some lengthy algebra, we obtain thienensionless (a)
mode-coupling equation for the systdfor n+ 0)

L=+ X [F(N) G + G o L ],

n’'#0
(3

where

1b (sz b2
A(n) = {EB(IHI -D- Eln\(nz— 1) - |n|NBQ} (4)

denotes the linear growth rate, and

b
F(n,n") = é{%B[M(sgr{nn’) - %) - l]

bZ ’ 3 b2
- %|nl[1—”5(3n' +n>} + 2niNezs [ -
G(n) = = {nllsgrinn) - 11- 1 (6)

represent second-order mode-coupling terms. The sgn func-
tion equals £1 according to the sign of its argument. In Eq.
(3) in-plane lengthsb(t), and time are rescaled hy=2R,,

bo, and the characteristic tinle=h,/|b(0)|, respectively. The
parametero=yb3/[127]b(0)|L3] denotes the dimensionless
surface tension, andNg=uoxI2b3/[48m75|b(0)|L3] repre-
sents the dimensionless magnetic Bond number. From now
on, we work with the dimensionless version of the equations.
We use Eq(3) to examine how the scenario of finite-time

singularities could be modified by the presence of an external
magnetic field.

FIG. 2. Linear evolution of the interface using E&) for n=2
IIl. DISCUSSION inld(TOSstsz in intervals of 0.25 wheria) Ng=0 and(b) Ng=2.5

A. First order (linear stage)
_ ) bilities arising at the ferrofluid interface, as the outer fluid
Although at the level of purely linear analysis we do NOtghters into the system during the lifting of the upper plate.
expect to fully explain or understand the development ofrpis pecyliar magnetically induced stabilizing mechanism
cusp singularities and droplet fissioning, some useful inforg,4gasts that it is conceivable to have a nontrivial evolution
mation may still be extracted from the linear growth réle  garing from an unstable interface, but not necessarily devel-
Hereinafter we assume that=0 and consider a destabilizing oping finite-time singularities.
driving b(t)>0. As in Ref.[7] we assume an exponentially  To illustrate the overall effect of the magnetic field on the
increasing gap widtl(t)=expt. This is precisely the ideal formation of finite-time singularities, we show in Fig. 2 time
plate separation profile used in related adhesion probe-taakverlaid plots of the linear interface evolution, obtained by
tests[10], since it provides a more uniform kinematics and integrating the first term on the right-hand side of &), for
nearly constant strain rate. n=2, and O<t=<2, with equally spaced time steps of 0.25.
By inspecting Eq(4) we notice that, in the absence of the We evolve from the initial radiusR,=0.5 with |£,(0)|
magnetic field(Ng=0) we have the traditional ill-posedness =R,/ 10. For clarity, the final droplet shape has been shaded.
associated to an unregularized Saffman-Taylor instabilityFigure 2a) depicts the interface evolution in the absence of
However, if Ng#0 we observe that the magnetic term isthe magnetic field(Ng=0). The initial circular interface
always stabilizing. As time progresses the magnetic term inevolves to a dumbbell-like shape, and tends to fission into
crease§~b’(t)] and eventually stabilizes the system. Notetwo separate circles as described by R&f. Even though
that the azimuthal symmetry and radial gradient of the magwe stopped showing the evolution before the complicated
netic field will result in a magnetic force directed radially pinch-off process, there is a clear evidence that a fissioning
inward [18]. This force tends to stabilize the fingering insta- singularity tends to occur wheNg=0. Note that the inter-
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face deformation grows sufficiently large thabiantitative
accuracy of any perturbative approach is doubtful. However,
as discussed in detail by Gingras and R§2@] the linear
theory is still valid as long as the pattern interfaces do not
overlap. In plotting Figures(2) and 2b) we have respected
such validity criterion.

Figure Zb) depicts the interface evolution for the same
set of parameters used to plot FigaR but now considering
the presence of a magnetic field wiNp=2.5X1075. It is
evident that the magnetic field changes considerably the ul-
timate motion of the interface. We recall that the magnetic
terms in Eq.(3) grow exponentially with time, mimicking
the intrinsic tendency towards circularization exhibited in the
usual time-dependent gap Hele-Shaw flows with nonzero
surface tensiofi7]. The most noteworthy feature in Fig(d
is the absence of an imminent fission at the central droplet 03 7 75 >
region. This reinforces the possibility of inhibiting fissioning ’ )
instability formation with the external azimuthal magnetic t
field.

C(n)

FIG. 3. C(n) as a function of time for modes=6 (black curve®
andn=4 (gray curves The magnetic Bond number Ng=0 (Ng
B. Second order (weakly nonlinear stage) =2.5x 107 for the solid(dashed curves.

To further investigate the suggestive possibility of inhib-
iting singularity formation by magnetic means, we turn ourchoose the phase of the fundamental mode soafra0 and
attention to the weakly nonlinear terms in the mode-coupling®,=0. From Eq.(3) we obtain the equations of motion for
equation(3). The numerical simulations performed in Ref. the subharmonic mode
[7] for =0 indicate that as the interface propagates inwards,

the penetrating fingers compete and the interface begins to a2 ={N/2) + C(N)ap}an,, (7
sharpen. During this process, the formation of interfacial
cusps are expected. The collision of the opposing interfaces bnlz:{)\(n/z) — C(n)aytbys, (8)

would result in a topological singularity, producing the in-
cipient breakup of the contracting droplet. Obviously, thiswhere the function
competition effect is intrinsically nonlinear and could not be
properly addressed by a purely linear stability analysis. To Cn) = }[F<— n E) +)\(n/2)G<E _E)} 9)
get analytical insight about this situation, we use our weakly 2 2'2 2° 2
nonlinear analysis to describe the competition process in lift- =~ i .
ing cells, and study the role played by the magnetic field indiSciplines finger competition. _
possibly avoiding the collision of the opposing interfaces. In Fig. 3 we plotC(n) as a function of time for two values
Within our approach, finger competition is related to the©f n- The solid(dasheglcurves describe the behavior Gfn)
influence of a fundamental mode assumingn is even, on  in the absencépresencg of the magnetic field. It is clear
the growth of its subharmonic mode2 [19]. As we have from Fig. 3 thatC(n)<0. From Eqgs(7) and(8) we verify
pointed out at the beginning of this work, it has been showrthat a negative€(n) increases the growth of the sine subhar-
[15,19 that weakly nonlinear predictions of the Saffman- monicb,,, while inhibiting growth of its cosine subharmonic
Taylor problem at second-order show good agreement witl,,. The result is an increased variability among the lengths
exact solutions for both zero and nonzero surface tensioff fingers of the outer fluid penetrating into the ferrofluid.
cases. Moreover, it has also been found that this agreement Tiis effect describes the competition of inward fingers.
obtained even when the weakly nonlinear evolution is de- When the magnetic field is absgsblid curves in Fig. B
scribed by the coupling of a small number of Fourier modesC(n) is a monotonically decreasing function of time, favor-
[15,19. The inclusion of additional modes would certainly ing an ever increasing competition among the inward fingers,
result in a more accurate description of the interface shapéhat eventually would collide resulting in a topological insta-
but the basic growth mechanisms of the viscous fingerindpility, in agreement with the numerical predictions of Ref.
process(spreading, splitting, and competitipnan be fairly  [7]. A completely different scenario is observed when the
well reproduced by using only a couple of relevant Fouriermagnetic field is nonzer@dashed curvesinitially C(n) de-
modes. For the purposes of the finger competition mechacreases with increasirigreaches a minimum value, and sub-
nism we propose in this work, the relevant modes are presequently increases as time advances. Eventu@(hy), van-
ciselyn andn/2. ishes, meaning that the competition ceases due to the action
To simplify our discussion it is convenient to rewrite the of the magnetic field. We have verified this behavior for all
net perturbatiory in terms of cosinda,=¢,+{-,] and sine values ofn=4. Our second-order findings suggest that the
[b,=i({,—¢-,)] modes. Without loss of generality we may azimuthal magnetic field acts to reduce the competition
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among inward fingers, ultimately preventing the occurrencen the time-dependent gap Hele-Shaw cell usipigase-
of interfacial singularities. These nonlinear observations arseparatedferrofluids [21-23, which are magnetic liquids
consistent with our first-order predictioriSec. Il A), re-  consisting of a phase rich in magnetic particles in suspension
garding the stabilizing role of the applied magnetic field.in another phase poor in such particles. For these magnetic
Now, in addition to disciplining regular interfacial perturba- fluids, it is known that near the critical point the surface
tions, the magnetic field seems to be able to inhibit the fortension between the two coexisting phases can be very small,
mation of singularities. tending precisely to zero at the critical point. Another possi-
bility would be performing lifting Hele-Shaw cell experi-

ments using miscible magnetic and nonmagnetic fluids
IV. CONCLUDING REMARKS [24,25.

By employing a mode-coupling approach, we have found On the theoretical side, a quantitative test of our chief
analytic evidence that the introduction of a ferrofluid into aresults to fully nonlinear stages of interface evolution would

lifting Hele-Shaw cell, subjected to an azimuthal appliedreqUire _thg calculation .Of exact sqlutions, or the elaborgti_on
field, may provide a magnetically induced way to inhibiting of sophlstlc.ated numerical simulations capable of descrlblng
the formation of cusp and fissioning singularities in zero Sur_non-LapIaman flowg7,26-28. O_f course, these theoretical .
face tension flows. This field-regulated behavior is predictedPProaches should be appropriately adapted to characterize

by our linear stability analysis, and reinforced by our weakly""ccurat(.aly .the pehavior of a ferrofluid dr_ople_t qnder applied
nonlinear results magnetic field, in the zero surface tension limit. In conclu-

We point out that the controlling mechanism we suggest>'°": We hope the'preser!t work W'” '”.‘pe' furth&rxpen—_
and the specific predictions of our theoretical work, have no{ne.ntal and theoreticabtudies on this frwt.fu.I research topic,
yet been checked experimentally. Considering the fundame _-h'Ch would allow the pheck of the predictions made by our
tal importance of singularity formation to many problems in IN€ar and weakly nonlinear analyses.
fluid dynamics, we believe it would be of interest to experi- ACKNOWLEDGMENT
mentalists to study the role of magnetic fields in disciplining
singular behavior in ferrofluids. An interesting possibility in ~ We thank CNPqBrazilian Research Coungifor finan-
this direction would involve the development of experimentscial support of this research.
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