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We consider the flow of a ferrofluid droplet in a Hele-Shaw cell with a time-dependent gap width. When the
surface tension and applied magnetic field are zero, interfacial instabilities develop and the droplet breaks. We
execute a mode-coupling approach to the problem and focus on understanding how the development of
singularities is affected by the action of an external field. Our analytical results indicate that the introduction of
an azimuthal magnetic field profoundly modifies pattern formation, allowing the inhibition of interfacial
singularities. We suggest the magnetic field can be used as a controllable parameter to discipline singular
behavior.
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I. INTRODUCTION

The development of finite-time singularities is of funda-
mental importance to a broad class of hydrodynamic prob-
lems, such as the ones related to distributions of vorticity
evolving under Euler’s equation[1], jet breakup[2], and
droplet fission/snap-off[3]. Within this group of problems,
the dynamics of the interface between viscous fluids con-
fined in a Hele-Shaw cell(Saffman-Taylor problem) has re-
ceived much attention[4–7]. In the absence of surface ten-
sion, these constrained flows are known to form cusp
singularities and droplet fission at the fluid-fluid interface.
Recently, an interesting work by Magdalenoet al. [6] studied
the possibility of preventing cusp singularies for zero surface
tension flows in a rotating Hele-Shaw cell. They have shown
that for a subclass of exact solutions there is a critical rota-
tion rate above which cusp formation is suppressed. Interest-
ingly, it has been found in Ref.[6] that such a critical value
for the rotation rate can be predicted by linear stability cal-
culations. These results open up the possibility of the exis-
tence of similar types of control parameters which could in-
hibit the formation of finite-time singularies in other
important confined flow systems.

A couple of years ago, Shelley and collaborators[7] stud-
ied another variant of the traditional Saffman-Taylor prob-
lem, and examined the dynamical evolution of a fluid drop in
a Hele-Shaw cell with a time-dependent gap width. In such a
cell the pressure gradient within the fluid is due to the lifting
of the upper plate, leading to the formation of visually strik-
ing fingering patterns. The sophisticated numerical simula-
tions performed in Ref.[7] revealed that, in the absence of
surface tension, a dumbbell-shaped droplet would fission
into two, characterizing a fissioning instability. The fluid
flow in lifting Hele-Shaw cells is not only intrinsically inter-
esting, but also of considerable importance to adhesion re-
lated problems[8–11]. Due to the practical and academic
relevance of the lifting cell problem it is of interest to study

ways of controlling emerging interfacial singularies.
In this work we study the evolution of a fluid droplet in a

time-dependent gap Hele-Shaw cell, and consider the case in
which the fluid used is aferrofluid [12,13]. Ferrofluids are
colloidal suspensions of nanometer-sized magnetic particles
suspended in a nonmagnetic carrier fluid. These fluids are
typically Newtonian and behave superparamagnetically. We
investigate the situation in which the ferrofluid droplet
evolves under the influence of a simple magnetic field con-
figuration exhibiting azimuthal symmetry, produced by a
current-carrying wire perpendicular to the cell plates. We
perform a weakly nonlinear analysis of the problem, and find
theoretical evidence indicating that the azimuthal magnetic
field could be used to inhibit the emergence of interfacial
singularities, even when surface tension is zero. One must
exercise caution in using a weakly nonlinear approach to
deal with the zero surface tension case, which presents subtle
singular effects[14]. On the other hand, the present weakly
nonlinear analysis serves as an alternative analytical tool to
tackle the problem, being nonperturbative in surface tension.
Remarkably, it has been shown recently that weakly nonlin-
ear predictions of the Saffman-Taylor problem at low orders
are compared satisfactorily to exact solutions for zero and
nonzero surface tension cases[15]. The magnetically moni-
tored process we present here certainly add a welcome ver-
satility to usual singularity formation problems in nonmag-
netic fluids, allowing the emergence of a systematic way of
controlling singular behavior using ferrofluids and appropri-
ate magnetic fields.

The layout of the rest of the paper is as follows: Section II
formulates our theoretical approach. We perform a Fourier
decomposition of the interface shape, and from a modified
form of Darcy’s law study the influence of an azimuthal
magnetic field on the development of interfacial patterns in a
time-dependent gap Hele-Shaw cell. Coupled, nonlinear, or-
dinary differential equations governing the time evolution of
Fourier amplitudes are derived in both nonzero and zero sur-
face tension cases. Section III discusses linear and weakly
nonlinear dynamics, focusing on the zero surface tension
limit. Section III A briefly discusses our linear stability re-*Email address: jme@df.ufpe.br
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sults, which suggest control of interfacial singularities by
magnetic means. In Sec. III B we show that some important
interfacial features can indeed be predicted and more quan-
titatively explained by our analytical mode-coupling ap-
proach. At second order we describe a finger competition
phenomenon, and use it to propose a mechanism responsible
for the inhibition of interfacial singularities by an azimuthal
magnetic field. Our conclusions are summarized in Sec. IV.

II. THE MODE-COUPLING EQUATION

Figure 1 sketches the geometry of the lifting cell problem.
Consider an incompressible ferrofluid of viscosityh located
between two narrowly spaced flat plates. The outer fluid is
nonmagnetic, and of negligible viscosity. The initial plate
spacing is represented byb0, and at a given timet the plate-
plate distance is denoted byb=bstd. A long, straight current-
carrying wire is directed along the axis perpendicular to the
plates. The magnetic field produced isH = I / s2prdêu, wherer
is the distance from the wire,I represents the electric current,
and êu is a unit vector in the azimuthal direction.

To investigate the dynamical evolution of the interface in
a time-dependent gap Hele-Shaw cell, we describe its per-
turbed shape asRsu ,td=Rstd+zsu ,td, where zsu ,td
=on=−`

+` znstdexpsinud, represents the net interface perturba-
tion with Fourier amplitudesznstd, and discrete azimuthal
wave numbersn=0, ±1, ±2, . . .. Theunperturbed ferrofluid
interface has initial and final radii defined asR0 and R
=Rstd, respectively. We consider a current-carrying wire of
negligible radius, so that the conservation of ferrofluid vol-
ume leads to the useful relationR2b=R0

2b0, where bothR and
b are time dependent. Notice that the Fourier expansionz
includes then=0 mode, withz0=−s1/2RdonÞ0uznstdu2.

For the quasi-two-dimensional geometry of the Hele-
Shaw cell, we employ the lubrication approximation and re-
duce the three-dimensional flow to an equivalent two-
dimensional one by averaging over the direction
perpendicular to the plates. We assume that the ferrofluid is
uniformly magnetized and that its magnetization is collinear
with the external fieldM =xH [16,17], wherex is the con-
stant magnetic susceptibility. This amounts to neglecting the

demagnetizing field relative to the applied field and can be
justified for low magnetic susceptibility of the ferrofluid, or
for large applied fields that saturate the ferrofluid magnetiza-
tion. It can also be justified for very thin ferrofluid films
when the field is parallel to the plane of the cell.

As in the traditional Hele-Shaw problem, the flow in the
ferrofluid is potential,v=−¹f, but now with a velocity po-
tential given by a modified Darcy’s law[18]

f =
b2

12h
fp − Cg, s1d

where p is the hydrodynamic pressure in the ferrofluid,C
=m0xH2/2 is a scalar potential containing the magnetic con-
tribution, andm0 is the free-space permeability. In addition to
the inclusion of the magnetic term in Eq.(1), we still have to
consider a modified incompressibility condition of the ferrof-
luid, to account for the lifting of the upper plate[7] ¹ ·v=

−ḃstd /bstd, where the overdot denotes total time derivative.
So, in contrast to the usual Darcy’s law case, the velocity
potential (1) is no longer Laplacianand satisfies a Poisson
equation

¹2f =
ḃstd
bstd

, s2d

where its right-hand side depends only on time. As a conse-
quence of the latter, the solution of Eq.(2) differs from being
harmonic by only the simple particular solutionf̄

= ḃr2/ s4bd. The problem is then specified by two boundary
conditions:(i) puR=g k, which expresses the pressure jump
at the interface, wherek denotes the interface curvature, and
g is the surface tension; and(ii ) the kinematic boundary
condition, which states that the normal components of each
fluid’s velocity vn=−n̂ ·¹f are continuous at the interface,
wheren̂ is the unit normal pointing outward.

We adapt a weakly nonlinear approach originally devel-
oped to study the traditional fixed-gap Hele-Shaw problem

sḃ=0d with nonmagnetic fluidssM =0d [19], to the current
time-dependent gap situation with ferrofluids. We define
Fourier expansions for the velocity potentials obeying Eq.

FIG. 1. Schematic representa-
tion of a time-dependent gap
Hele-Shaw cell with a ferrofluid.
The azimuthal magnetic field is
produced by a long, straight wire
carrying an electric currentI.
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(2), and use the boundary conditions to expressf in terms of
zn. After some lengthy algebra, we obtain thedimensionless
mode-coupling equation for the system(for nÞ0)

żn = lsndzn + o
n8Þ0

fFsn,n8dzn8zn−n8 + Gsn,n8dżn8zn−n8g,

s3d

where

lsnd = F1

2

ḃ

b
sunu − 1d −

sb2

R3 unusn2 − 1d − unuNB
b2

R4G s4d

denotes the linear growth rate, and

Fsn,n8d =
1

R
H1

2

ḃ

b
FunuSsgnsnn8d −

1

2
D − 1G

−
sb2

R3 unuF1 −
n8

2
s3n8 + ndG +

3

2
unuNB

b2

R4J , s5d

Gsn,n8d =
1

R
hunufsgnsnn8d − 1g − 1j s6d

represent second-order mode-coupling terms. The sgn func-
tion equals ±1 according to the sign of its argument. In Eq.
(3) in-plane lengths,bstd, and time are rescaled byL0=2R0,

b0, and the characteristic timeT=b0/ uḃs0du, respectively. The

parameters=gb0
3/ f12huḃs0duL0

3g denotes the dimensionless

surface tension, andNB=m0xI2b0
3/ f48p2huḃs0duL0

4g repre-
sents the dimensionless magnetic Bond number. From now
on, we work with the dimensionless version of the equations.
We use Eq.(3) to examine how the scenario of finite-time
singularities could be modified by the presence of an external
magnetic field.

III. DISCUSSION

A. First order (linear stage)

Although at the level of purely linear analysis we do not
expect to fully explain or understand the development of
cusp singularities and droplet fissioning, some useful infor-
mation may still be extracted from the linear growth rate(4).
Hereinafter we assume thats=0 and consider a destabilizing

driving ḃstd.0. As in Ref.[7] we assume an exponentially
increasing gap widthbstd=exp t. This is precisely the ideal
plate separation profile used in related adhesion probe-tack
tests[10], since it provides a more uniform kinematics and
nearly constant strain rate.

By inspecting Eq.(4) we notice that, in the absence of the
magnetic fieldsNB=0d we have the traditional ill-posedness
associated to an unregularized Saffman-Taylor instability.
However, if NBÞ0 we observe that the magnetic term is
always stabilizing. As time progresses the magnetic term in-
creasesf,b4stdg and eventually stabilizes the system. Note
that the azimuthal symmetry and radial gradient of the mag-
netic field will result in a magnetic force directed radially
inward [18]. This force tends to stabilize the fingering insta-

bilities arising at the ferrofluid interface, as the outer fluid
enters into the system during the lifting of the upper plate.
This peculiar magnetically induced stabilizing mechanism
suggests that it is conceivable to have a nontrivial evolution
starting from an unstable interface, but not necessarily devel-
oping finite-time singularities.

To illustrate the overall effect of the magnetic field on the
formation of finite-time singularities, we show in Fig. 2 time
overlaid plots of the linear interface evolution, obtained by
integrating the first term on the right-hand side of Eq.(3), for
n=2, and 0ø tø2, with equally spaced time steps of 0.25.
We evolve from the initial radiusR0=0.5 with uzns0du
=R0/10. For clarity, the final droplet shape has been shaded.
Figure 2(a) depicts the interface evolution in the absence of
the magnetic fieldsNB=0d. The initial circular interface
evolves to a dumbbell-like shape, and tends to fission into
two separate circles as described by Ref.[7]. Even though
we stopped showing the evolution before the complicated
pinch-off process, there is a clear evidence that a fissioning
singularity tends to occur whenNB=0. Note that the inter-

FIG. 2. Linear evolution of the interface using Eq.(3) for n=2
and 0ø tø2 in intervals of 0.25 when(a) NB=0 and(b) NB=2.5
310−5.
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face deformation grows sufficiently large thatquantitative
accuracy of any perturbative approach is doubtful. However,
as discussed in detail by Gingras and Rácz[20] the linear
theory is still valid as long as the pattern interfaces do not
overlap. In plotting Figures 2(a) and 2(b) we have respected
such validity criterion.

Figure 2(b) depicts the interface evolution for the same
set of parameters used to plot Fig. 2(a), but now considering
the presence of a magnetic field withNB=2.5310−5. It is
evident that the magnetic field changes considerably the ul-
timate motion of the interface. We recall that the magnetic
terms in Eq.(3) grow exponentially with time, mimicking
the intrinsic tendency towards circularization exhibited in the
usual time-dependent gap Hele-Shaw flows with nonzero
surface tension[7]. The most noteworthy feature in Fig. 2(b)
is the absence of an imminent fission at the central droplet
region. This reinforces the possibility of inhibiting fissioning
instability formation with the external azimuthal magnetic
field.

B. Second order (weakly nonlinear stage)

To further investigate the suggestive possibility of inhib-
iting singularity formation by magnetic means, we turn our
attention to the weakly nonlinear terms in the mode-coupling
equation(3). The numerical simulations performed in Ref.
[7] for s=0 indicate that as the interface propagates inwards,
the penetrating fingers compete and the interface begins to
sharpen. During this process, the formation of interfacial
cusps are expected. The collision of the opposing interfaces
would result in a topological singularity, producing the in-
cipient breakup of the contracting droplet. Obviously, this
competition effect is intrinsically nonlinear and could not be
properly addressed by a purely linear stability analysis. To
get analytical insight about this situation, we use our weakly
nonlinear analysis to describe the competition process in lift-
ing cells, and study the role played by the magnetic field in
possibly avoiding the collision of the opposing interfaces.

Within our approach, finger competition is related to the
influence of a fundamental moden, assumingn is even, on
the growth of its subharmonic moden/2 [19]. As we have
pointed out at the beginning of this work, it has been shown
[15,19] that weakly nonlinear predictions of the Saffman-
Taylor problem at second-order show good agreement with
exact solutions for both zero and nonzero surface tension
cases. Moreover, it has also been found that this agreement is
obtained even when the weakly nonlinear evolution is de-
scribed by the coupling of a small number of Fourier modes
[15,19]. The inclusion of additional modes would certainly
result in a more accurate description of the interface shape,
but the basic growth mechanisms of the viscous fingering
process(spreading, splitting, and competition) can be fairly
well reproduced by using only a couple of relevant Fourier
modes. For the purposes of the finger competition mecha-
nism we propose in this work, the relevant modes are pre-
cisely n andn/2.

To simplify our discussion it is convenient to rewrite the
net perturbationz in terms of cosinefan=zn+z−ng and sine
fbn= iszn−z−ndg modes. Without loss of generality we may

choose the phase of the fundamental mode so thatan.0 and
bn=0. From Eq.(3) we obtain the equations of motion for
the subharmonic mode

ȧn/2 = hlsn/2d + Csndanjan/2, s7d

ḃn/2 = hlsn/2d − Csndanjbn/2, s8d

where the function

Csnd =
1

2
FFS−

n

2
,
n

2
D + lsn/2dGSn

2
,−

n

2
DG s9d

disciplines finger competition.
In Fig. 3 we plotCsnd as a function of time for two values

of n. The solid(dashed) curves describe the behavior ofCsnd
in the absence(presence) of the magnetic field. It is clear
from Fig. 3 thatCsndø0. From Eqs.(7) and (8) we verify
that a negativeCsnd increases the growth of the sine subhar-
monicbn/2 while inhibiting growth of its cosine subharmonic
an/2. The result is an increased variability among the lengths
of fingers of the outer fluid penetrating into the ferrofluid.
This effect describes the competition of inward fingers.

When the magnetic field is absent(solid curves in Fig. 3),
Csnd is a monotonically decreasing function of time, favor-
ing an ever increasing competition among the inward fingers,
that eventually would collide resulting in a topological insta-
bility, in agreement with the numerical predictions of Ref.
[7]. A completely different scenario is observed when the
magnetic field is nonzero(dashed curves): initially Csnd de-
creases with increasingt, reaches a minimum value, and sub-
sequently increases as time advances. Eventually,Csnd van-
ishes, meaning that the competition ceases due to the action
of the magnetic field. We have verified this behavior for all
values ofnù4. Our second-order findings suggest that the
azimuthal magnetic field acts to reduce the competition

FIG. 3. Csnd as a function of time for modesn=6 (black curves)
and n=4 (gray curves). The magnetic Bond number isNB=0 sNB

=2.5310−5d for the solid(dashed) curves.
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among inward fingers, ultimately preventing the occurrence
of interfacial singularities. These nonlinear observations are
consistent with our first-order predictions(Sec. III A), re-
garding the stabilizing role of the applied magnetic field.
Now, in addition to disciplining regular interfacial perturba-
tions, the magnetic field seems to be able to inhibit the for-
mation of singularities.

IV. CONCLUDING REMARKS

By employing a mode-coupling approach, we have found
analytic evidence that the introduction of a ferrofluid into a
lifting Hele-Shaw cell, subjected to an azimuthal applied
field, may provide a magnetically induced way to inhibiting
the formation of cusp and fissioning singularities in zero sur-
face tension flows. This field-regulated behavior is predicted
by our linear stability analysis, and reinforced by our weakly
nonlinear results.

We point out that the controlling mechanism we suggest,
and the specific predictions of our theoretical work, have not
yet been checked experimentally. Considering the fundamen-
tal importance of singularity formation to many problems in
fluid dynamics, we believe it would be of interest to experi-
mentalists to study the role of magnetic fields in disciplining
singular behavior in ferrofluids. An interesting possibility in
this direction would involve the development of experiments

in the time-dependent gap Hele-Shaw cell usingphase-
separatedferrofluids [21–23], which are magnetic liquids
consisting of a phase rich in magnetic particles in suspension
in another phase poor in such particles. For these magnetic
fluids, it is known that near the critical point the surface
tension between the two coexisting phases can be very small,
tending precisely to zero at the critical point. Another possi-
bility would be performing lifting Hele-Shaw cell experi-
ments using miscible magnetic and nonmagnetic fluids
[24,25].

On the theoretical side, a quantitative test of our chief
results to fully nonlinear stages of interface evolution would
require the calculation of exact solutions, or the elaboration
of sophisticated numerical simulations capable of describing
non-Laplacian flows[7,26–28]. Of course, these theoretical
approaches should be appropriately adapted to characterize
accurately the behavior of a ferrofluid droplet under applied
magnetic field, in the zero surface tension limit. In conclu-
sion, we hope the present work will impel further(experi-
mental and theoretical) studies on this fruitful research topic,
which would allow the check of the predictions made by our
linear and weakly nonlinear analyses.
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